COURSE OUTCOME (CO):: M.Sc. in Chemistry under CBCS(2020-2021) Class: M.Sc.(Semester-I)										
PAPER: CEM 101(Physical Chemistry)(Mathematical preliminaries & Quantum COURSE: CO1										
Mechai	nics-I Thermodynamics Statistical Mechanics-I fundamentals of									
Nanoso	Nanoscience and technology and Principle of molecular spectroscopy-I)									
Nanose	ience and technology and Principle of molecular spectroscopy-ij									
	Mathematical multimination 8 Quantum Machanica I									
•	The analysis the students to early the basis concerns of colorius to concerns in	ala a valiatur i								
1.	1. To enable the students to a pply the basic concepts of calculus to concepts in chemistry.									
2.	2. Enable to get idea of Extremum Principles, Constrained Extremization, power Series, Fourier									
	transformation, Vectors and vector space etc.									
3.	. To study the basic postulates of quantum mechanics and also to study the properties of operators and commutators.									
4.	To enable the students to solve the bound status: box with infinite and finite	walls								
5.	Enable to understand the quantum mechanical aspect of angular momentum	n operator								
•	Thermodynamics									
1.	To know the basic concepts of chemical potential, partial molar prop coefficient for solutes and solvents	erties, fugacity and activity								
2	To know the basic concepts of thermodynamic properties of gases with spe	cial reference to real gases in								
2.	nure state and mixtures and to learn the thermodynamics of ideal and non-ide	al binary solutions								
	Statistical Mechanics-I	ar officing solutions.								
	statistical mechanics-i									
On succ	1. To understand the basic concents of above call measurestate microstate	the record records a record chility								
	1. To understand the basic concepts of phase cell, macrostate, microstate,	thermodynamic probability.								
	 To describe the various ensembles. To accurate the various ensembles. 									
	3. To correlate and differentiate Maxwell-Boltzmann, Bose-Einstein and Fe	rmi-Dirac statistics.								
	 Explain the partition function and the derivation of thermodynamic pro partition function. 	perties in terms of molecular								
	5. To know the different aspects of statistical thermodynamics and its appl	ications.								
•	Fundamentals of Nanoscience and technology									
	1. To know the basic concepts of nanoscience and technology.									
	2 To carry out the synthesis and characterization and to know the pr	operties and applications of								
	nanomaterials	operates and applications of								
	Principle of molecular spectroscopy I									
1	Evaluate the nature of electromagnetic radiation, shapes and width and inten	sity of sportral lines								
2.	To understand the principle and instrumentation of microwave, vibration re-	tation Raman and infra rod								
Ζ.	construction of microwave, vibration of microwave, vibration-ro	ad spectra for chamical								
	spectroscopy and interpret incrowave, vibration-rotation Raman and initia-	ed spectra for chemical								
CEN4 10	allalysis.									
	2(Organic Chemistry) Pericyclic reaction-i, Organic									
transto	rmations/synthesis/reagents chemistry-l, natural products-	COURSE: CO2								
terpend	olds, Natural products-alkalolds, Retro-synthesis-i									
•	Pericyclic reaction-l									
1.	To enable the students to learn about characteristic features of Pericyclic rea	actions.								
2.	Explain the conservation of orbital symmetry MO of different polyenes.									
3	To understand the electroyclic cycloaddition and sigmatronic reactions									
<u>л</u>	To anable the students to learn about rationalisation of different example	lo with the basis of frontior								
4.	achital interaction	le with the basis of holitier								
_	orbital interaction.	_								
5.	To understand Wood Word Hofmann symmetry rules for pericyclic reaction	ons, exceptions to symmetry								
	rules, correlation diagram of different perecyclic reactions.									
•	Organic transformations/synthesis/reagents chemistry-I									
1.	To understand the Cation-olefin cyclization reaction and apply it to the synth	esis of tritepenes.								
2.	To enable the students to learn about biogenetic isoprene rule for n tetracyclic and pentacyclic ring systems	nonocyclic, bicyclic, tricyclic,								
З	Study the various name reaction with examples									
5.	Natural products_ternenoids									
-	To anable the students to learn shout learning when									
	ro enable the students to learn about isoprene rules.									
2.	Learn biogenesis terpenoides.									
3.	Study the structure and synthesis of Higherterpenoids: sesqui-, di-, sester-, t	rı-, tetra- terpenoids.								
•	Natural products-alkaloids									
1.	Study the structure and synthesis of Phenyl ethyl amine, quinine, nicotir	ne, peptides, nucleoside and								

	nucleotide.	
2.	Learn biogenesis alkaloids.	
•	Retro-synthesis-I	
1.	To understand the Organic Synthesis Strategy and the disconnection	approach.
2.	Retrosynthetic approach to planning organic syntheses.	
CEM 10	3(Inorganic Chemistry)Symmetry and Group theory-I, Solid state	COURSE: CO3
Chemis	try and Crystallography, Bioinorganic chemistry-I	
•	Symmetry and Group theory-I	
1.	To know the applications of group theory in chemical bonding.	
2.	To enable the students to learn about the concept of groups, theorems.	subgroups, classes and the related
3.	To understand the commutative (abelian) groups and cyclic groups a	and their examples.
4.	To enable the students to learn about group multiplication ta	ables, the rearrangement theorem,
	Symmetry elements and operations, products of symmetry operat and equivalent atoms.	ions, equivalent symmetry elements
5.	To know the Hermann–Mauguin (HM) notations, optical activity and group symmetry; similarity transformation and the invariance of cha	dipole-moment on the basis of point arcters.
6.	To know the Matrix representation of symmetry operations, char	racters of symmetry operations in a
	representation, invariance of character under similarity transformation	tion, the row / column orthogonality
	of characters, reducible and irreducible representations, the "Gre	eat Orthogonality Theorem" and its
	corollaries.	
٠	Crystallography	
1.	To know the defects in solids.	
2.	Students are able to determine the equilibrium concentration of Sch	ottky and Frenkel defects.
3.	Describe the Free electron theory, electronic specific heat, Hall effec of metals.	t, electrical and thermal conductivity
4.	Learn single crystal and polycrystal (twinning problem) lattice, unit	cell-primitive and non-primitive unit
	cells, unit cell parameters and crystal systems.	
5.	To know the Bragg"s equation, reciprocal lattice and its relation to d	irect lattice.
٠	Bioinorganic chemistry-I	
After c	ompletion of this topic, students are able to	
1.	Know the essential elements in Biology (major and trace), benefic	ial and toxic elements, role of metal
	ions.	
2.	Explain the Bioenergetic principle and role of ATP.	
3.	Explain the O2–uptake proteins: hemoglobin, myoglobin, heme	rythrin and hemocyanin, structure,
	function and model study.	
4.	Understand the Electron transport protein: Fe-S proteins, cytochron proteins: ferritin, transferin, ceruloplasmin.	nes. Metal ions transport and storage
5.	Know the Transport across biological membrane - Na ⁺ -K ⁺ -ATPas	e. jonophores. Hydrolytic enzymes:

5. Know the Transport across biological membrane - Na⁺-K⁺-ATPase, ionophores. Hydrolytic enzymes: carbonic anhydrase, carboxy peptidase, urease.

CEM 10	D4(Food processing and preservation-I and Computer basics-I+II)	COURSE: CO4						
•	Food processing and preservation-I							
1.	To understand the Constituents of Food and their sources and properties.	physico-chemical and functional						
2.	To understand the factors influencing the growth and survival of microorganisms in food, role of microbes in fermented foods and types and causes of food spoilage.							
3.	3. To understand the Principles and methods of food preservation.							
•	Computer basics							
On suc	cessful completion of this subject the students have the ability							
1.	1. to acquaint knowledge about Hardware, Software, Memory, Storage devices.							
2.	2. to understand the decimal number system, the binary number system, hexadecimal notation, octal number system.							
3.	3. to know the Logical operations AND, OR, NOT, NAND, NOR, EX-OR, EX-NOR.							
4.	4. to understand the basic definitions, theorems of Boolean algebra.							
CEM 19	CEM 195(Inorganic Chemistry Practical) COURSE: CO5							
•	Inorganic Chemistry Practical							

1. The students will get training in the quantitative analysis of metal ions using gravimetric method.

- 2. The students will get training in the quantitative analysis of metal ions in alloys.
- 3. To impart skill to students in the Equilibrium studies on various inorganic reactions.

4.	4. To impart skill to students in the Spectrophotometric Estimation.							
5The students will get training in theSynthesis and Characterization of inorganic compounds.								
CEM 196(FOOD PROCESSING, PRESERVATION & PACKAGING LAB) COURSE: CO6								
•	FOOD PROCESSING, PRESERVATION & PACKAGING LAB							
1.	1. The students will develope basic skills in the Preparation of jams, jellies, syrups, squashes, mixed fruit							
	juices: Aloe vera mixed with lichi, mango, pine apple, water melon, etc.							
2.	2. The students will get training in the Estimation of Food Values (carbohydrate, fat, protein, vitamins) and							
	Food Safety Test.							
3.	The students will get training in the Preservation of processed food and	d Packag	ing of processed and					
	preserved food.							
	COURSE OUTCOME (CO):: M.Sc. in Chemistry under CB	CS(2020-	-2021)					
	Class: M.Sc.(Semester-II)							
CEM 2	01(Quantum Mechanics-II, Chemical kinetics, electrochemistry-II, mole	ecular	COURSE: CO7					
	spectroscopy-II)							
•	Quantum Mechanics-II							
1.	To enable the students to solve the bound status: box with infinite and	d finite w	alls.					
2.	To enable the students to solve the simple quantum mechanical mode	ls such a	s simple harmonic					
	oscillator, H atom etc.							
•	Chemical kinetics							
1.	Students will understand Flow and relaxation methods of measuremen	nts of rea	ction rates.					
2.	Students are able to understand flash photolysis, Kinetics of f	fast read	ction, Homogeneous and					
	heterogeneous catalysis, Enzyme catalysis and inhibition, autocata	alysis, os	scillatory reactions, redox					
	reactions.							
3.	The students will get Preliminary idea of Transition State Theory.							
•	electrochemistry-II							
After c	ompleting this topic, students must have a basic knowledge to							
1.	explain non stationary processes in electrolytic solutions.							
2.	2. derive Onsager conductance equation.							
3.	3. explain the effect of high electric field and frequency on ion conductance.							
4.	4. understand basic principles of cyclic voltammetry and coulometry, polyelectrolyte.							
•	molecular spectroscopy-II							
After c	ompleting this topic, students must have a basic knowledge to							
1.	understand the Classical Theory of Raman Scattering and quantu	um mech	nanical Picture of Raman					
	Scattering.							
2.	describe Characteristic parameters of Raman lines, Pure Rotation and	Vibration	al Raman spectra.					
3.	understand the basic Principles of a Raman spectrometer, application of	of Ramar	n Spectroscopy.					
4.	acquire knowledge on Electronic Spectroscopy.							
CEM 20	2(Pericyclic reaction-2, Organic transformations/synthesis/reagents		COURSE: CO8					
chemis	try-2,Retrosynthesis II,Stereochemistry-1,Stereochemistry-2)							
•	Pericyclic reaction-2							
After c	ompleting this topic, students must have a basic knowledge to							
1.	understand Perturbation molecular orbital theory (PMO).	_						
2.	explain the energy diagram of ethylene and butadiene system with diff	ferent su	bstitutions.					
3.	understand the cycloaddition reactions of ethylene and butadiene syst	tem.						
4.	understand Regioselectivity, Periselectivity and Site selectivity, se	condary	interactions in pericyclic					
	reactions, cheletropic reactions.							
5.	Know how to solve the Problems relating to above reactions.							
•	Organic transformations/synthesis/reagents chemistry-2							
After c	ompleting this topic, students must have a basic knowledge to							
1.	understand Woodward prevost hydroxylation, Sharpness asymmetric	expoxida	tion, AD-mix reactions and					
	Iransformation of expoxides							
2.	know the use of various reagents in organic transformation.							
3.	understand Organic Synthesis Strategy							
•	Retrosynthesis II							
After c	After completing this topic, students must have a basic knowledge to							
1.	1. understand the Organic Synthesis Strategy and the disconnection approach.							
2.	know Retrosynthetic approach to planning organic syntheses.							

•	Staraachamistry 2						
•	Stereochemistry-2						
After Co	Simpleting this topic, students must have a basic knowledge to						
1.	1. understand different projection formulae and their interconversions.						
2.	Know the Conformational and configurational enantiomers.						
3.	Know the Stereochemical nomenclatures.						
4.	explain the Stereochemical features of cyclohexane and its derivative	es.					
5.	understand the computation of stereoisomers of different systems.						
•	Stereochemistry 2						
After co	ompleting this topic, students must have a basic knowledge to						
1.	understand Prochirality, Prostereoisomerism, Topicity etc.						
2.	explain the addition of a chiral reagents to chiral ketones and aldehy	des.					
3.	describe models of stereochemical control in terms of Cram, Felkin a	nd Karabatso	S.				
4.	explain Stereospecific, stereoselective reactions and Sharplessexpoxi	dation reaction	on.				
CEM 20	3(Organometallic chemistry –I, Group theory-II, Chemistry of p	COURSI	E: CO9				
and d-b	olock elements)						
•	Organometallic chemistry –I						
After co	ompleting this topic, students must have a basic knowledge to						
1.	understand the use of Ligands in organometallic chemistrySynthesis.						
2.	describe the bonding and reactivity of Metal-alkylalkenealkyne	allvlcarbene	ecarbyne and -carbide				
	complexes.	,,	-,,				
3	learn about Agostic interaction. Stereochemical non-rigidity and fl	uxional behav	viour of organometallic				
5.	compounds with typical examples						
•	Group theory-II						
After co	ompleting this tonic students must have a basic knowledge to						
	understand the Character tables for various point groups and concer	t of Projectio	n operator				
1.	gain knowledge of representation for cyclic groups wave f	inctions as	hases for Irreducible				
2.	representations and the standard reduction formula		bases for ineducible				
2	describe the direct product representation and its decomposition						
5.	identify nentree metric elements						
4. F	describe the spectral transition probabilities and selection rules						
5.	describe the spectral transition probabilities and selection rules.						
•	Chemistry of p and d-block elements						
Arrer completing this topic, students must have a basic knowledge to							
un	derstand the synthesis, reactions, structures bondings and uses of p a						
CEIVI 20	4: Nanotechnology: Principles and Practices (Introduction, synthesis	or	COORSE: COTO				
nanom	aterials, analysis techniques, application of nanotechlogy)						
•	Introduction, synthesis of nanomaterials						
After co	ompleting this topic, students must have a basic knowledge to						
1.	understand Bulk and Nano materials and also the differences betwee	en these.	A				
2.	understand also the Geometric structure, Magic numbers, co-ordina	tion number o	of small clusters.				
3.	gain idea of Synthesis, characterisation, Electrical and optical proper	ies and applic	cations of nano				
	systems.						
•	Analysis techniques						
After co	ompleting this topic, students must have a basic knowledge to						
1.	analyze the Nano materials using Microscopes, Optical microscop	bes, Electron	microscopes, Scanning				
	electron microscope, Transmission electron microscope, Scanning p	robe microsco	ope, Scanning tunneling				
	microscope, Atomic force microscope.						
2.	analyze the Nano materials using XRD and Spectroscopies like	UV-VIS-NIR,	Infrared (FTIR), Photo				
	luminescence, XPS (X-ray photo electron spectroscopy), Anger electr	on spectrosco	.vq				
•	Application of nanotechlogy						
After co	ompleting this topic, students must have a basic knowledge to						
1.	get a basic understanding of application of nanotechnology.						
	CEM 295(Physical Practical) COURSE: (011					
To imp	art experimental skills to students in the conductivity meter potention	eter nH mete	er spectrophotometer				
CEM 296(Organic Practical)							
-	Organic Practical						
1	Students will gain an understanding of methods of qualitative analys	is of liquid cor	mnle				
2.	The students will develop basic skills in the tochniques of TLC bailing	noint dotor	nination: functional				
۷.	2. The sculents will develop basic skills in the techniques of FLC, boiling point determination; functional groups tosts. LW VIS spectral characterizations						
1	groups tests, UV-VIS spectral characterizations.						

3.	3. Understand to assign 1H-NMR, 13C-NMR spectra.					
4. To enable the students to learn about the extraction principles of Renewable chemicals.						
COURSE OUTCOME (CO):: M.Sc. in Chemistry under CBCS(2020-2021)						
Class: M.Sc.(Semester-III)						
DES and	IL (Photophysical Processes, LASER and its application, ESR spectroscopy,	COURSE: CO13				
	Photophysical Processos					
After c	proceedings this tonic students must have a basic knowledge to					
1	explain the Photophysical processes of unimolecular processes, delayed fluore	escence. Kinetics of				
	bimolecular processes.					
2.	Understand the collision guenching, Stern-Volmer equation, Concentration de	pendence of quenching				
	and excimer formation.					
3.	explain the Excited state electron transfer processes: Exciplex, Twisted intramo	blecular charge transfer				
	processes and proton couple intra and intermolecular electron transfer proce	sses.				
٠	LASER and its application					
After co	ompleting this topic, students must have a basic knowledge to					
1.	understand the general feature and properties of LASER.					
2.	understand the method of obtaining population inversion, Laser cavity modes	, Q-switching and Mode				
-	locking.					
3.	explain the different examples of LASER e.g., Ruby laser, Nd-YAG laser, diode l	aser, He-Ne laser, N2 laser,				
	Ar laser, excimer and exciplex laser, Dye laser.					
•	ESR spectroscopy					
Atter Co	ompleting this topic, students must have a basic knowledge to					
1. 2	explain the principle of Esk spectroscopy and comparison to NWR spectra.					
2.	understand the derivation of energy of spinning electron in a magnetic field					
з. 4	know the EPR-instrumentation representation of EPR spectrum X-hand and ()-hand spectra line width				
ч.	hyperfine splitting magnetically equivalent and nonequivalent sets of nuclei	g band speetra, me wath,				
5.	gain the concept of <i>a</i> -anisotropy.					
6.	explain the spectra of simple organic free radicals, transition metal complexes	and their expected				
	number of lines and intensities.	•				
7.	understand the metal hyperfine anisotropic spectra, zero-field splitting.					
•	PES and NQR					
After co	ompleting this topic, students must have a basic knowledge to					
1.	understand the concept of Photoexcitation and photoionization.					
2.	understand the concept of core level (XPS, ESCA) and valence level (UPS) phot	oelectron spectroscopy.				
3.	understand the basic concept of XPS and UPS experiments.					
4.	Know the concept of chemical shift.					
5.	get a deep insight into the detection of atoms in molecules and differenti	ation of same elements in				
c	different environments form XPS.					
о. 7	have an idea of the halffe of molecular orbitals from OPS.	ural information from NOP				
7.	spectra					
CEM 30	2/Pericyclic reaction-III Linear free energy relationshin Land II					
Organo	metallic chemistry)					
•	Pericyclic reaction-III	1				
After co	ompleting this topic, students must have a basic knowledge to					
1.	learn about characteristic features of Pericyclic reactions.					
2.	understand the applications of MO theory to Electrocyclic reactions, S	igmatropic rearrangement,				
	cycloaddition and cycloreversion reactions, cheletropic reactions and ene reac	tion.				
3.	have a basic idea of Frontier Molecular Orbital theory.					
4.	have a concept of aromaticity of Transition States, orbital correlation diagram	s, Huckel MO theory- MO"s				
	of chains and rings alternants and nonalternants.					
Linear free energy relationship I and II						
Arter completing this topic, students must have a basic knowledge to						
1. understand the quantitative correlations of rate and equilibria.						
Ζ.	2. Know the Linear free energy relationships with special reference to Hammett, Tatt, Yukawa-Tauno and Grupwald-Weinstein equations					

Study the application of Linear Free Energy Relationship to aromatic, aliphatic, polynuclear and hetero-

	aromatic systems.						
4.	Have an elementary ideas of multiparameter correlation reactions.						
5.	5. Study the Electrophilic substitutions SE1 and SE2 reactions in aliphatic systems.						
•	Organometallic chemistry						
After co	ompleting this topic, students must have a basic knowledge to						
1.	understand the Preparation and reactions of pi-complexes.						
2	get an idea about hentonumbers, rules for nucleonhilic addition t	o complexes and applications to typical					
2.	synthesis	o complexes and applications to typical					
3	understand the use of transition metals in organic synthesis						
CEN	1 202/Bioorganic and sunramplocular Chemistry 1.2 and 2						
CLIV	Dontidos and nuclois asids. Groon chomistry)	COORSE. COIS					
After of	performed and nucleic actus, Green chemistry	unramologular Chamistry to					
	understand the discovery nomenclature, supthesis, properties an	applications of Crown others					
1.	Understand the discovery, nomenciature, synthesis, properties an	a applications of crown ethers.					
2.	Know the structures and applications of Cryptands.						
3.	Study the definition, examples of molecular recognition utilizing F	1-bonding, electrostatic, solvophobic, pi-					
	pi interaction, etc and its application.						
4.	know the introduction to molecular mechanics calculation ar	nd its use in the design of molecular					
	receptors.						
5.	sudy the mechanism, kinetics and application of enzymes in organ	nic synthesis.					
6.	know the basic idea of vesicles, fibers and tubules.						
7.	understand the basic concepts of amphiphiles, bola-amphiphiles a	and Self-replication.					
8.	Know the definition, classification, examples of Gels, morphology	and rheology of gels.					
9.	understand the applications of Chemical sensors.						
•	Peptides and nucleic acids						
	By the end of this topic students must have a basic knowledge to						
1.	know the Structure and Functions of Peptides and Proteins.						
2.	be familiarise with the α -helix, β -pleated sheet, β -turn, 3.10 helix,	Ramachandran plot.					
3.	understand the structure, functions and replication of nucleic acid	ds.					
•	Green chemistry						
	By the end of this topic students must have a basic knowledge to)					
1.	understand the current status of chemistry and the environment.						
2.	. know the definition of green chemistry.						
3.	. know the applications of green chemistry for sustainable development.						
4.	know the Principles, methodologies and techniques in Green Chemistry.						
5.	describe the Synthesis in aqueous media and Catalytic methods ir	n synthesis.					
6.	know the examples of green chemistry.						
7.	be familiarise with the future trends in green chemistry.						
CEM 30	4(Introduction of Pharmaceutical Chemistry, Classification and	COURSE: CO16					
nomen	clature of drugs, Theory of drog action and factors affecting the						
drugs,	Types of drugs, Antimalarial drugs)						
•	Introduction of Pharmaceutical Chemistry, Classification and no	menclature of drugs					
	By the end of this topic students must have a basic knowledge to)					
1.	know the important aspects of pharmaceutical chemistry.						
2.	know the classification of drugs and their nomenclature.						
•	Theory of drug action and factors affecting the drugs. Types of d	rugs Antimalarial drugs					
	By the end of this tonic students must have a basic knowledge to						
1	know the Theory of drug action and factors affecting the drugs						
2	have an idea of Hypopotics, sedative drugs. Anticonvulsivant and	analgesic drugs					
2.	nave an idea of Hyponotics, sedative drugs, Anticonvulsivant and analgesic drugs.						
5.	. understand the concept of general anaesthetics and local anaesthetics.						
4. 5	have an idea of expectoralit, psychodclive and hervous system su	inulant urugs.					
5. C	nave an idea of antiperkinson, and instantine, and information and	nu antipyretic urugs.					
6.	understand the basic idea of Antiamoebic, antifungal and	antiviral drugs, antineoplastic agents,					
	disinfectant and antiseptic, thyroid normones and antithyro	ia arugs, vitamins, sulfonamides and					
_	antipiotics.						
7.	7. know the Malaria parasite and its life cycle, chemotherapy of malaria using antimalarial drugs.						
CEM 39	CEIVI 395(Project work: Organic Cnemistry spl.) COURSE: CO17						
By the	By the end of this topic, students must have a basic knowledge to						
1.	capable of thinking the various field of Chemistry and to develop	a sense of investigation.					
2.	define problems, formulate hypotheses, test hypotheses, analyse, in	nterpret and draw conclusions from data,					

	establish hypotheses.						
3. plan, execute and report the results of an experiment or investigation and employ modern library search							
tools to locate, improve, and evaluate chemistry-related information.							
COURSE OUTCOME (CO):: M.Sc. in Chemistry under CBCS(2020-2021)							
Class: M.Sc.(Semester-IV)							
CEM 4	D1(Spectroscopy for Structure Elucidation)		COURSE: CO18				
By the	end of this topic, students must have a basic knowledge to						
-	1. understand the thorough revise of 1H NMR and preliminary as	spects	s of 13C NMR, CW and FT				
	techniques.						
	2. understand the combined application of spectroscopic techniques	(UV,	IR, NMR, MS) in elucidation				
	of structure and study of reactions of organic compounds.						
CEM 4	02(Organic Photochemistry-1+2), Biological Active Molecules, Vitamins a	and	COURSE: CO19				
co-enz	ymes, Vitamins and co-enzymes and Hetercycles-2)						
٠	Organic Photochemistry-1+2						
By the	end of this topic, students must have a basic knowledge to						
1.	have an idea of fundamental concepts of organic Photochemistry and Ja	ablons	ski diagram.				
2.	Know the Photochemistry of organic compounds, Norrish type- I and typ	pe II p	processes.				
3.	Know Patterno Buchi reaction, Barton reaction, addition reaction, o	xidati	on reaction, Photochemical				
	reduction, substitution reaction, cis-trans isomerism, photochemist	ry of	⁵ butadiene, di-pi methane				
	rearrangement and related processes.						
•	Biological Active Molecules, Vitamins and co-enzymes						
By the	end of this topic, students must have a basic knowledge to						
	obtain the knowledge of Biological Active Molecules, Vitamins and co-en	nzym	es.				
•	Hetercycles-2						
By the	end of this topic, students must have a basic knowledge to						
	understand the generalized approach to the synthesis of heterocycles p	osses	ssing 5-,6-, and 7- membered				
	rings with one or two heteroatoms per ring and reactions of heterocycles.						
		-0.					
CEM 4	03(Stereochemistry-3+4+5+6+7)		COURSE: CO20				
CEM 4 By the	03(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to		COURSE: CO20				
CEM 40 By the 1.	O3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor	nditio	COURSE: CO20 ns and applications.				
CEM 40 By the 1. 2.	03(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio	nditio	COURSE: CO20 ns and applications.				
CEM 4 By the 1. 2. 3.	D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, <i>trans</i> and <i>cis</i> deep and <i>ci</i>	nditio ons. claim:	COURSE: CO20 ns and applications. s.				
CEM 44 By the 1. 2. 3. 4.	D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, trans and cis dee describe the steroid and nonsteroid conformation, symmetry, torsion	nditio ons. claimang	COURSE: CO20 ns and applications. s. gle enthalphy, entropy, free				
CEM 44 By the 1. 2. 3. 4.	D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, <i>trans</i> and <i>cis</i> dee describe the steroid and nonsteroid conformation, symmetry, torsion energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin	ndition ons. claim: n ang s, dec	COURSE: CO20 ns and applications. s. gle enthalphy, entropy, free calones.				
CEM 44 By the 1. 2. 3. 4. 5.	D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, <i>trans</i> and <i>cis</i> dec describe the steroid and nonsteroid conformation, symmetry, torsio energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti	ndition ns. claim: n ang s, dec ons, l	COURSE: CO20 ns and applications. s. gle enthalphy, entropy, free calones. perhydrophenanthrenes and				
CEM 44 By the 1. 2. 3. 4. 5.	D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, trans and cis dee describe the steroid and nonsteroid conformation, symmetry, torsion energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic	ndition ons. claims n ang s, dec ons, j cal	COURSE: CO20 ns and applications. s. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability,				
CEM 44 By the 1. 2. 3. 4. 5.	D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, trans and cis dee describe the steroid and nonsteroid conformation, symmetry, torsio energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic sterochemistry of perhydrodiphenic acids and perhydrophenanth	ndition ons. claim: n ang s, dec ons, j cal srenes	COURSE: CO20 ns and applications. s. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, s, conformations of some				
CEM 44 By the 1. 2. 3. 4. 5.	D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, <i>trans</i> and <i>cis</i> dec describe the steroid and nonsteroid conformation, symmetry, torsio energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic sterochemistry of perhydrodiphenic acids and perhydrophenanth triterpenes.	ndition ons. claims n ang s, dec ons, j cal arenes	COURSE: CO20 ns and applications. s. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, s, conformations of some				
CEM 44 By the 1. 2. 3. 4. 5. 6.	D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, <i>trans</i> and <i>cis</i> dee describe the steroid and nonsteroid conformation, symmetry, torsion energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic sterochemistry of perhydrodiphenic acids and perhydrophenanth triterpenes. Know the modern concepts of nucleophilic addition to carbonyl comp	ndition ons. claims n ang s, dec ons, j cal arenes ound:	COURSE: CO20 ns and applications. s. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, s, conformations of some s, Felkin model, Burzi Dunitz				
CEM 44 By the 1. 2. 3. 4. 5. 6.	D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, <i>trans</i> and <i>cis</i> dee describe the steroid and nonsteroid conformation, symmetry, torsion energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic sterochemistry of perhydrodiphenic acids and perhydrophenanth triterpenes. Know the modern concepts of nucleophilic addition to carbonyl comp trajectory, Cieplak model and examples.	ndition ons. claim: n ang s, dec ons, cal a orenes ound:	COURSE: CO20 ns and applications. s. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, s, conformations of some s, Felkin model, Burzi Dunitz				
CEM 44 By the 1. 2. 3. 4. 5. 6. 7.	D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, <i>trans</i> and <i>cis</i> dee describe the steroid and nonsteroid conformation, symmetry, torsio energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic sterochemistry of perhydrodiphenic acids and perhydrophenanth triterpenes. Know the modern concepts of nucleophilic addition to carbonyl comp trajectory, Cieplak model and examples. Know the concept of optical rotation, specific and molecular rotations-til	ndition ons. claims n ang s, dec ons, j cal cal arenes ounds heir u	COURSE: CO20 ns and applications. s. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, s, conformations of some s, Felkin model, Burzi Dunitz				
CEM 44 By the 1. 2. 3. 4. 5. 6. 7. 8.	D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different corderive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, <i>trans</i> and <i>cis</i> decidescribe the steroid and nonsteroid conformation, symmetry, torsionenergy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reactides perhydroanthracenesconformation, energy, symmetry and optices sterochemistry of perhydrodiphenic acids and perhydrophenanth triterpenes. Know the modern concepts of nucleophilic addition to carbonyl computing trajectory, Cieplak model and examples. Know the concept of optical rotation, specific and molecular rotations-tillunderstand Brewster rule, Lowe's rule, circular birefrigence, optical rotation	ndition ons. claims n ang s, dec ons, j cal arenes ound: heir u tatory	COURSE: CO20 ns and applications. s. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, s, conformations of some s, Felkin model, Burzi Dunitz units.				
CEM 44 By the 1. 2. 3. 4. 5. 6. 7. 8.	D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, <i>trans</i> and <i>cis</i> dee describe the steroid and nonsteroid conformation, symmetry, torsion energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic sterochemistry of perhydrodiphenic acids and perhydrophenanth triterpenes. Know the modern concepts of nucleophilic addition to carbonyl competrajectory, Cieplak model and examples. Know the concept of optical rotation, specific and molecular rotations-tl Understand Brewster rule, Lowe's rule , circular birefrigence, optical rotation.	ndition ons. claims n ang s, dec ons, j cal cal irenes ound: heir u tatory	COURSE: CO20 ns and applications. s. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, s, conformations of some s, Felkin model, Burzi Dunitz units. dispersion octant rule, axial				
CEM 44 By the 1. 2. 3. 4. 5. 6. 7. 8. CEM 44	 D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, <i>trans</i> and <i>cis</i> dee describe the steroid and nonsteroid conformation, symmetry, torsion energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic sterochemistry of perhydrodiphenic acids and perhydrophenanth triterpenes. Know the modern concepts of nucleophilic addition to carbonyl comp- trajectory, Cieplak model and examples. Know the concept of optical rotation, specific and molecular rotations-tl Understand Brewster rule, Lowe's rule , circular birefrigence, optical rot haloketone rule and application. D4(FOOD PROCESSING AND PRESERVATION-II) 	ndition ons. claim: n ang s, dec ons, j cal a orenes ound: heir u tatory	COURSE: CO20 ns and applications. s. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, s, conformations of some s, Felkin model, Burzi Dunitz units. dispersion octant rule, axial COURSE: CO21				
CEM 44 By the 1. 2. 3. 4. 5. 6. 7. 8. CEM 4	 D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, <i>trans</i> and <i>cis</i> dee describe the steroid and nonsteroid conformation, symmetry, torsio energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic sterochemistry of perhydrodiphenic acids and perhydrophenanth triterpenes. Know the modern concepts of nucleophilic addition to carbonyl comp trajectory, Cieplak model and examples. Know the concept of optical rotation, specific and molecular rotations-ti Understand Brewster rule, Lowe's rule , circular birefrigence, optical rot haloketone rule and application. D4(FOOD PROCESSING AND PRESERVATION-II) By the end of this topic students must have a basic knowledge to 	ndition ons. claim: n ang s, dec ons, j cal a orenes ound: heir u tatory	COURSE: CO20 ns and applications. s. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, s, conformations of some s, Felkin model, Burzi Dunitz mits. r dispersion octant rule, axial COURSE: CO21				
CEM 44 By the 1. 2. 3. 4. 5. 6. 7. 8. CEM 44 1.	 D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, <i>trans</i> and <i>cis</i> dee describe the steroid and nonsteroid conformation, symmetry, torsio energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic sterochemistry of perhydrodiphenic acids and perhydrophenanth triterpenes. Know the modern concepts of nucleophilic addition to carbonyl comp- trajectory, Cieplak model and examples. Know the concept of optical rotation, specific and molecular rotations-ti Understand Brewster rule, Lowe's rule , circular birefrigence, optical rot haloketone rule and application. D4(FOOD PROCESSING AND PRESERVATION-II) By the end of this topic students must have a basic knowledge to Know the processing and preservation of milk products, Cereals legume 	ndition ons. claims n ang s, dec ons, j cal a orenes ound: heir u tatory	COURSE: CO20 Ins and applications. S. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, s, conformations of some s, Felkin model, Burzi Dunitz units. r dispersion octant rule, axial COURSE: CO21 nuts.				
CEM 44 By the 1. 2. 3. 4. 5. 6. 7. 8. CEM 44 1. 2.	 D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, <i>trans</i> and <i>cis</i> dee describe the steroid and nonsteroid conformation, symmetry, torsion energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic sterochemistry of perhydrodiphenic acids and perhydrophenanth triterpenes. Know the modern concepts of nucleophilic addition to carbonyl comp- trajectory, Cieplak model and examples. Know the concept of optical rotation, specific and molecular rotations-ti Understand Brewster rule, Lowe's rule , circular birefrigence, optical rot haloketone rule and application. D4(FOOD PROCESSING AND PRESERVATION-II) By the end of this topic students must have a basic knowledge to Know the processing and preservation of milk products, Cereals legume Know the chemical composition, nutritional importance of dietary oils a processing of Edible upgetable oils and fat hydrogenetad fat 	ndition ons. claims n ang s, dec ons, j cal cal cal cal cal cal cal cal cal cal	COURSE: CO20 Ins and applications. S. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, S, conformations of some s, Felkin model, Burzi Dunitz inits. r dispersion octant rule, axial COURSE: CO21 nuts. ts, Production and				
CEM 44 By the 1. 2. 3. 4. 5. 6. 7. 8. CEM 44 1. 2.	 D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, <i>trans</i> and <i>cis</i> ded describe the steroid and nonsteroid conformation, symmetry, torsio energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic sterochemistry of perhydrodiphenic acids and perhydrophenanth triterpenes. Know the modern concepts of nucleophilic addition to carbonyl comp trajectory, Cieplak model and examples. Know the concept of optical rotation, specific and molecular rotations-ti Understand Brewster rule, Lowe's rule , circular birefrigence, optical rot haloketone rule and application. D4(FOOD PROCESSING AND PRESERVATION-II) By the end of this topic students must have a basic knowledge to Know the processing and preservation of milk products, Cereals legume Know the chemical composition, nutritional importance of dietary oils a processing of Edible vegetable oils and fat, hydrogenated fat. 	ndition ons. claim: n ang s, dec ons, j cal a orenes ound: heir u tatory s and nd fa	COURSE: CO20 Ins and applications. S. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, S, conformations of some s, Felkin model, Burzi Dunitz inits. r dispersion octant rule, axial COURSE: CO21 nuts. ts, Production and				
CEM 44 By the 1. 2. 3. 4. 5. 6. 7. 8. CEM 44 1. 2. 3. CEM 40	D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, <i>trans</i> and <i>cis</i> ded describe the steroid and nonsteroid conformation, symmetry, torsio energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic sterochemistry of perhydrodiphenic acids and perhydrophenanth triterpenes. Know the modern concepts of nucleophilic addition to carbonyl comp- trajectory, Cieplak model and examples. Know the concept of optical rotation, specific and molecular rotations-tl Understand Brewster rule, Lowe's rule , circular birefrigence, optical rot haloketone rule and application. D4(FOOD PROCESSING AND PRESERVATION-II) By the end of this topic students must have a basic knowledge to Know the processing and preservation of milk products, Cereals legume Know the chemical composition, nutritional importance of dietary oils a processing of Edible vegetable oils and fat, hydrogenated fat. Acquire the knowledge of food safety. COURCE: COL	ndition ons. claims n ang s, dec ons, j cal a orenes ound: heir u tatory s and nd fa	COURSE: CO20 Ins and applications. S. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, s, conformations of some s, Felkin model, Burzi Dunitz units. r dispersion octant rule, axial COURSE: CO21 nuts. ts, Production and				
CEM 44 By the 1. 2. 3. 4. 5. 6. 7. 8. CEM 44 1. 2. 3. CEM 45 8.	D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, trans and cis ded describe the steroid and nonsteroid conformation, symmetry, torsion energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic sterochemistry of perhydrodiphenic acids and perhydrophenanth triterpenes. Know the modern concepts of nucleophilic addition to carbonyl comp trajectory, Cieplak model and examples. Know the concept of optical rotation, specific and molecular rotations-ti Understand Brewster rule, Lowe's rule , circular birefrigence, optical rot haloketone rule and application. D4(FOOD PROCESSING AND PRESERVATION-II) By the end of this topic students must have a basic knowledge to Know the chemical composition, nutritional importance of dietary oils a processing of Edible vegetable oils and fat, hydrogenated fat. Acquire the knowledge of food safety. D5 Project(Organic Special) COURSE: CO2	ndition ons. claims n ang s, dec ons, j cal cal cal cal cal cal cal cal cal cal	COURSE: CO20 Ins and applications. s. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, s, conformations of some s, Felkin model, Burzi Dunitz inits. r dispersion octant rule, axial COURSE: CO21 nuts. ts, Production and				
CEM 44 By the 1. 2. 3. 4. 5. 6. 7. 8. CEM 44 1. 2. 3. CEM 44 By the	D3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, trans and cis dec describe the steroid and nonsteroid conformation, symmetry, torsion energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic sterochemistry of perhydrodiphenic acids and perhydrophenanth triterpenes. Know the modern concepts of nucleophilic addition to carbonyl comp trajectory, Cieplak model and examples. Know the concept of optical rotation, specific and molecular rotations-ti Understand Brewster rule, Lowe's rule, circular birefrigence, optical rot haloketone rule and application. D4(FOOD PROCESSING AND PRESERVATION-II) By the end of this topic students must have a basic knowledge to Know the chemical composition, nutritional importance of dietary oils a processing of Edible vegetable oils and fat, hydrogenated fat. Acquire the knowledge of food safety. 25 Project(Organic Special) COURSE: CO2 <td< td=""><th>ndition ons. claim: n ang s, dec ons, j cal a ound: heir u tatory s and nd fa</th><th>COURSE: CO20 Ins and applications. S. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, S, conformations of some s, Felkin model, Burzi Dunitz Inits. r dispersion octant rule, axial COURSE: CO21 nuts. ts, Production and</th></td<>	ndition ons. claim: n ang s, dec ons, j cal a ound: heir u tatory s and nd fa	COURSE: CO20 Ins and applications. S. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, S, conformations of some s, Felkin model, Burzi Dunitz Inits. r dispersion octant rule, axial COURSE: CO21 nuts. ts, Production and				
CEM 44 By the 1. 2. 3. 4. 5. 6. 7. 8. 6. 7. 8. CEM 44 1. 2. 3. CEM 44 By the 1. 2.	O3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, trans and cis dee describe the steroid and nonsteroid conformation, symmetry, torsio energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic sterochemistry of perhydrodiphenic acids and perhydrophenanth triterpenes. Know the modern concepts of nucleophilic addition to carbonyl comp trajectory, Cieplak model and examples. Know the concept of optical rotation, specific and molecular rotations-ti Understand Brewster rule, Lowe's rule , circular birefrigence, optical rot haloketone rule and application. 24(FOOD PROCESSING AND PRESERVATION-II) By the end of this topic students must have a basic knowledge to Know the chemical composition, nutritional importance of dietary oils a processing of Edible vegetable oils and fat, hydrogenated fat. Acquire the knowledge of food safety. 25 Project(Organic Special) COURSE: CO2	ndition ons. claim: n ang s, dec ons, j cal a orenes ound: heir u tatory s and nd fa	COURSE: CO20 Ins and applications. S. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, S, conformations of some s, Felkin model, Burzi Dunitz inits. r dispersion octant rule, axial COURSE: CO21 nuts. ts, Production and				
CEM 44 By the 1. 2. 3. 4. 5. 6. 7. 8. CEM 44 1. 2. 3. CEM 44 By the 1. 2. 3. 3. 5. 7. 8. 7. 7. 8. 7. 7. 8. 7. 7. 8. 7. 7. 8. 7. 7. 8. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	O3(Stereochemistry-3+4+5+6+7) end of this topic, students must have a basic knowledge to understand Curtin-Hammett principle, its derivation under different cor derive Winstein Holress equation and Eliel equation and their applicatio understand the Stereochemistry of Fused ring systems, trans and cis dee describe the steroid and nonsteroid conformation, symmetry, torsio energy, substituted declains q-methyldecalins and 9,10 dimethyldecalin Know the Sterochemistry of 4-10 membered rings, transanular reacti perhydroanthracenesconformation, energy, symmetry and optic sterochemistry of perhydrodiphenic acids and perhydrophenanth triterpenes. Know the modern concepts of nucleophilic addition to carbonyl comp trajectory, Cieplak model and examples. Know the concept of optical rotation, specific and molecular rotations-ti Understand Brewster rule, Lowe's rule , circular birefrigence, optical rot haloketone rule and application. 24(FOOD PROCESSING AND PRESERVATION-II) By the end of this topic students must have a basic knowledge to Know the chemical composition, nutritional importance of dietary oils a processing of Edible vegetable oils and fat, hydrogenated fat. Acquire the knowledge of food safety. 25 Project(Organic Special) COURSE: CO2 end of this Research Work,	ndition ons. claims n ang s, dec ons, j cal a orenes ound: heir u tatory s and nd fa	COURSE: CO20 Ins and applications. S. gle enthalphy, entropy, free calones. perhydrophenanthrenes and activity, relative stability, s, conformations of some s, Felkin model, Burzi Dunitz units. r dispersion octant rule, axial COURSE: CO21 nuts. ts, Production and				

Department of Chemistry MAPPING OF CO AND PO (PG Course)

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
CO1	CO1	CO17	CO1	CO15	CO17	CO15	CO1	CO1	CO15	CO5
CO2	CO2	CO22	CO4		CO22		CO4	CO10		CO6
CO3	CO3		CO10				CO6	CO15		CO11
CO4	CO7		CO15				CO10	CO16		CO12
CO5	CO8		CO16				CO16	CO17		CO17
CO6	CO9		CO21				CO21	CO22		CO22
	CO17									
	CO22									